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Progress in the Development of a Numerical Tokamak
J. U. Brackbill
Los Alamos National Laboratory
Los Alamos, NM 87545

I. The Numerical Tokamak

The development of highly concurreiit computers is causing a revolution in numerical
modeling. One can now anticipate a time when constraints on computational power are removed.
That antcipation motivates the identification of grand challenge problems, those problems which
combine significance and generality, and benefit from enormous computing power.

Magnetic confinement fusion faces a grand challenge problem that will sumulate the energy
and creanvity of the entire community of computatonal physicists. That challenge is the
development of a numerical model for a Tokamak. The successful modeling of a Tokamak would
lead to a betser understanding of the operaton of these machines. As John Dawson cominents, "it
would give much greater confidence in the predicted machine performance; it would provide the
capability to test out our new ideas and machine improvements without committing them to
hardware, and it would be a powerful tool for machine builders." Since success with the
Tokamak is the principal hope for magnetc fusion in the forseeable future, 1eal contributions from
numerical modeling would be invaluable.

The challenge in modeling Tokamaks iies in the variety of physical processes that occur, and
the complexity of their interaction. There is at the core of a Tokamak a hot, collisionless plasma
confined by magnedc fields, and sustained by micr.ywave and neutral beam heating. There is at
the wall of a Tokamak a cold, collisionless plasma where atomic physics and surface physics
determine the impurity levels and overall energy confinement. Both of these regions of the
Tokamak nt problems whose solution is a major challenge. The complexity of a calculation
that geats regions simultaneourly must be addressed from the outset. Software tools must be
developed that allow scientists with many interests to work to?ethcf. so that, for example, one can
ask how a neutral beam injector modifies the radia!l plasma profile, and thus th
magnetohydrodynamic stability; how large excursions from the reactor operating point affect the
lifetime of the first wall, or how to match the propertiec of the magnet power supply 1o the
inductance of the plasma.

There is agreement on certain essential components of Tokamak physics. The modeling of
Tokamaks requires the means to represent complex geometries, long-range interaction of charged
particles through electric and magnetic fields, non-equilibrium plasma phenomena, and the
nonlinear interaction of many ?ex and dissimilar processes. It is clear that no one method can
encompass all of the physics of a Tokamak. However, because of the range of plasma conditions
encountered in a tokamak, there is reason to believe lhx\t plasma simulation using the full kinetic
equations has th= est chance of achieving this goal '.

Plasma simulation uses particle methods to model the dynamics of a plasma in a magnetic
ficld. From u computational point of view, particle methods are challenging candidates for
compun'ng on hiﬂ]y concurrent computers. ir successful implementation requires tack'ing
problems in load balancing and communication whose solution will drive the deve nt of new
software and hardware tools and point the way for a wide variety of computational algorithms and
applications. In addition, particle methods have found very wide application, including turbulence
modeling, tracer transport in global climate modeling, biological flows, and space plasmas, all of
which ill benefit from the development of a numerical Tokamak.

I1. Plasma Simulation On Magnetohydrodynamic Time Scales

To undenstand the kinetic processes that determine energy confinement and impurity
production in magnetic confinement experiments, otie must solve the plasma kinetic equations on
the time scales of magnetic tusion experiments. This is a major challenge, both in size of the
computational problem and its complexity. One not only must increase the capabilities of plasma
simulation by developing merhods that can be used on the highly parallel computers of the future,
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but also must incorporate the best of the methods that are currently available. For example, the
implicit method that is described below extended the range of plasma simulation a hundredfold.
The capabilitv 1o model kinetic effects in three dimensions on magnetohydrodynamic time scales
in realistic geometries is the ulurnate goal.

In a numerical calculaton, the equations of motion for a plasma in a static magnetc field
include an equation to calculate the particle positon, xp, from the particle velocity, up
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a momentum equation to calculate the particle velocity in the electric, E, and magnetic, B, fields,
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(where q¢/mg is the charge to mass rato, and c is the speed of light), and Poisson’s equation to
calculate the long-range inferactich among the partcles through an electric field,
VeE® =« 4xn®. (3)

where At is the time ste, and n® and £9 are the charge density and electric field at (1+6At).
The particles are labeled by the subscript p, and the species (e.g. ions and electrons) by the
subscript s. The charge density is calculated by interpolating the particle charge to the grid with a

particle shape, S.
ne-Z;J‘dax'S(x-x';h)q.8(x'-xg)/h3. (4)

xpe, for example, is given by, xp-(l-G) xp(x)+9 xp(t+Au). Evaluating (4) from the particle
data, solving (3), then solving (1) and (2) advances the soluton from tto t+ At.
When 8=0, the difference equations (1-4) are explicit and the time step is limited by a linear

stability condition which depends on the plasma frequency, Wy When w_At<2, the difference

%
equations are stable. When mpAt >2, the equatiors are unstable. Since w, usually is much higher

than the frequency of interest, one pays a very high price to mode; low-frequency phenomena
because the time step is so small.

Implicit difference equations eliminate the stability constraint. When 1/2<8<1, Eqgs. (1-4)
are irolicit and the equations are stable even with very large At . However, one cannot solve Eqgs.
(1-4) with 8>12. Instead, one must derive fluid-like equations by expanding the charge density
about xpo in powers of S=k<Ux2>1/2 where k is a characteristic wave number, and <dx2> is
the mean square particle displacement in a time step. The expansion introducces higher order
moments of the particles, including the current density, J, and the pressure, I1, but the sequence
of moments can be quncated by neglecung terms of O(52). From the moment equations one can
evaluate n9 in terms ¢ known cuanttes and derive an equation for the electric field to replace

Eq (3).
VeeeE = 4 (5)
where n' is calculzted from the particle data. The dielectnc tensor, €, has the form,

coE® - (1+Ewp)E°+emmE°xB+ep_rEOOBB . (6)

Various terms are defined in Vu and Brackbill3: and implicit plasma simulation is reviewed 1n
Bruckbill and Cohen=. Al of the intermediate variables are easily calculated.

The diclectric 1cnsor contains information to anticipate the response of the plasma 1o the
electric field, so that while the right side contains information at ¢ me t, the electric field can be
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calculated at time t+At. When the field equation, Eq. (5), is replaced by a finite difference
approximatioi to model an inhomogeneous and magnetized plasma, one must invert a
non-symmetric matrix with variable coefficients. We use an incomplete Cholesky decompositon
and conjugate gradient iteranon® to solve the field equation in CELESTE.The best solver for a
highly concurrent compater is a research question.

III. Plasma Simulation in Real Geometries

To do plasma simulation in real geometries requires many changes in the basic me:hod3. In
CELESTE, & code developed at Los Alamos, the particle equations of motion are solved on a
structured gnid of arbirranly shaped, six-sided cells. For example, a body-firted grid tnay be
used o0 model the geomewry of magnetic confinement experiments by causing the computational
domain to conform 169 the structure and shape of the boundary as shown in Fig. 1, where a mesh
for a torus is shown®.
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Fig. 1 A particle orbit in a toroidal magnetic field s superimposed on a plot of he outer surface of
the computation grid on which th- orbit is calculated.
The solution of the plasma simulation equations on an arbitrary grid uses both physical and

natural coordinates. The natural coordinates (§,1,v), give the location on the grid, and are
calculated by mapping each of CELESTE's six-sided cells in physical space on to a unit cube in
natural space. At each vertex, the natural coordinates assume integer values, (ij.k), which are
constant as the mesh moves. Elsewhere, the mapping betweer: physical and nnmu'{ coordinates is
given by trilinear interpolation.

The grid may be completely redefined from one cycle to the next, except that the new grid
also must map on to a logical cube. In CELESTE, the number of grid points is fixed, but the grid
points may be moved about as needed. This allows one to use an adaptive grid.

Adaptive grids have been applied extensively in modeling singular phenomens in two
dimensions. A partial list of applications includes magnetic reconnection, shocks, and
hydrodynamically unstable interfaces. The use of adaptive grids has resulied in more accurate
numencal solutions than would have been possible with uniform grids. The adapgive gnd is
fcnmlncfj by solving a variational problem, in which one minimizes a functional/. A simple

unctional ig,

I.-g’-”'[dxdydzw {VE,'}Z. (8 EL )= (&N v) M

With w=1, minimizing I gives a body-fitted grid like the one shown in Fig. 1. When w is

not constant, the grid points are closer together where w is larger, and further apart where w is
smaller. If w is an appropriate function of the data, the grid will adapt to provide increased
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resoludon where it is needed by moving grid points. For example, if w is proporuonal to the
current density in a calculation of flow in a timc-dcpcgndcm magnetic field, the gnd will cluster to
resolve gradients in the magneuc field intensity 5.

Body-titted grids for fluid and magnetohydrodynamic flows have been used for many

ycars9. Their use for particle simulations is a new dcvclopmcntlo- “, and new niethods for
moving particles thro gh the grid have been developed. In a recent method developed by Mike
Jones a1 Los Alamos, the particle orbit is calculated on the body-fitted gnd using an algorithm that
can be implemented easily on a concurrent processor. The orbit is calculated in natural
coordinates, which are generated by mapping each cell in the mesh to a unit cube. The natural
coordinates locate the particle within the mesh, arﬂc 'ininatc the expensive local calculations that
are otherwise necessary on a non-rectilinear grid <+ 1°.The physical coordinates of a particle are
advanced by solving Eq. (1). The natural coordinates of a particle are calculatzd using the
covariant and contravariant mesh vectors 0.
The covariant and contravariant vectors are defined by,
d X

a -
a5

(8)

: a x .k g
.' - V§I= —L‘:'— ( )
where (i, j, k) = (1, 2, 3) in cyclic permutatdon and the Jacobian, J, is defined by,
1

2
J -(de1(g”)) -liO(l’.xlk). (10)
The natural coordinates of a particle are advanced from the equation,

i
@ o o
- — , 11
a "t (v
The covar:ant mesh vectors are computed on the grid and interpolated to the particles as needed.

IV. Some Early Resuits

A computational studﬂ of edge effects in magnetized plasmas has yic ided the discovery of
high frequency sheath oscillations with implicogt.ions for future experiments 14,

In CELESTID, a one-dimensional code?, the full electromagnetic interactions are solved
directiy with arbitrarily large time steps. With small time steps, the accuracy of an implicit
calculation is as good as an explicit calculaton using the standard leapfrog differencing in time.
With large ume steps, the accuracy and swability of the implicit method are much better than the
explicit method.

In two di.mcniions, transport driven by the ion temperature gradient instability is calcula‘%j
with CELESTE 15, Siniilarly to Lee, a 16x16 cell mesh with 64 particles per cell was used!6.
The plasma is magnetized with a strong field perpendicular to the plane of the calculation, and a
small component in the vertical, or peniodic direction. Temperature and density gradients are

maintained in the horizontd direction. The time step is u)peAt-ES(X). 1250 umes the explicit
stability limit, and £2 . ;At=1.36. The calculation is continued for 800 ume steps, or 173 ion

gyroperiods. Linear theory predicts instability when the ratio, N;, of the ion temperature (o the ion
density gradient length scales is greater than one. In Fig. 2, a selected ion orbit is plotied with
N;=0.5, which is stable. Each point corresponds to the position of the ion on a time step. The ion
drifts along the magnetic field direction, with little motion in the horizontal direction. (When the
ion leaves the top boundary, it returns through the bottom.)

When 1, is increased to 2, the same particle exccutes the orbii shown in Fig. 3. Because of

the electrostatic field caused by the ion-temperature gradient instability, there is now lateral motion
by the ions. This motion leads to increased heat transfer from the hot boundary on the right to the
cold boundary on the left. The heat transfer is between S and 10 times that calculated from



classical theory.
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Figure 2. An ion orbit for an stable plasma is plo;red.
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Figure 3. An ion orbit in an unstable plasma is plorted.

In Fig. 1, a particle orbit in a static \nagnetic field with winding number 1 is shown. The
orbit is calculated on the toroidal grid whose outer surface is shown.grhc temperature is high to
make the gyromotion visiole.
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